Is SIFT Scale Invariant?

نویسندگان

  • Jean-Michel Morel
  • Guoshen Yu
چکیده

This note is devoted to a mathematical exploration of whether Lowe’s Scale-Invariant Feature Transform (SIFT) [21], a very successful image matching method, is similarity invariant as claimed. It is proved that the method is scale invariant only if the initial image blurs is exactly guessed. Yet, even a large error on the initial blur is quickly attenuated by this multiscale method, when the scale of analysis increases. In consequence, its scale invariance is almost perfect. The mathematical arguments are given under the assumption that the Gaussian smoothing performed by SIFT gives an aliasing free sampling of the image evolution. The validity of this main assumption is confirmed by a rigorous experimental procedure, and by a mathematical proof. These results explain why SIFT outperforms all other image feature extraction methods when it comes to scale invariance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship

Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...

متن کامل

Research Progress of the Scale Invariant Feature Transform (SIFT) Descriptors

The SIFT (Scale Invariant Feature Transform) is a computer vision algorithm that is used to detect and describe the local image features. The SIFT features are robust to changes in illumination, noise, and minor changes in viewpoint. The SIFT features have been used object recognition, image retrieval and matching, and so on.. The research of SIFT descriptors and improved SIFT descriptors is im...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

On the consistency of the SIFT Method

This note is devoted to the mathematical arguments proving that Lowe’s Scale-Invariant Feature Transform (SIFT [23]), a very successful image matching method, is indeed similarity invariant. The mathematical proof is given under the assumption that the gaussian smoothing performed by SIFT gives aliasing free sampling. The validity of this main assumption is confirmed by a rigorous experimental ...

متن کامل

Scale Invariant Feature Transform for n - Dimensional Images ( n - SIFT ) Release

This document describes the implementation of several features previously developed[2], extending the 2D scale invariant feature transform (SIFT)[4, 5] for images of arbitrary dimensionality, such as 3D medical image volumes and time series, using ITK1. Specifically, we provide a scale invariant implementation of a weighted histogram of gradient feature, a rotationally invariant version of the ...

متن کامل

Lucas-Kanade Scale Invariant Feature Transform for Uncontrolled Viewpoint Face Recognition

Face recognition has been widely investigated in the last decade. However, real world application for face recognition is still a challenge. Most of these face recognition algorithms are under controlled settings, such as limited viewpoint and illumination changes. In this paper, we focus on face recognition which tolerates large viewpoint change. A novel framework named Lucas-Kanade Scale Inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010